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- + 55 scientists, covering various areas of atomistic- and mesoscale simulations (QM, FF, MC)
- 60/40 government/industry funding

- Current industry projects: - Current government-funded projects:
- GPCR membrane enzymes (Berlex, Avantis) - SOFC Fuel cells (DoE)
- Methane activation (Chevron) - Stress-corrosion cracking (NSF)
- Nanotube/metal links (Intel) - Metaloxide catalysis (DoE)
- DLC engine friction (Nissan) - lonic liquid catalysis (DoE)
- Cu/Si catalysis (Dow Corning) - Explosives sensitivity (DoE, ONR)
- Semiconductors (Samsung) - Dendrimer/environment (NSF)

- Software integration (DARPA)
- QM-development (ASC)




What can ReaxFF do for you ?

Decomposition of a archea phospholipid
biomarker (GDGT) by exposure to high-velocity
(30eV) N-radicals
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- Single-processor
MD/NVE simulation

- 300-326 atoms

- 15000 MD-iterations
- CPU-time: 1884
seconds

- ReaxFF can perform fast molecular
dynamics simulations involving

complicated chemical reactions
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ReaxFF: background and rules

Empirical methods:
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ReaxFF: key features

-To get a smooth transition from nonbonded to single, double and
triple bonded systems ReaxFF employs a bond length/bond order
relationship’2. Bond orders are updated every iteration.

- Nonbonded interactions (van der Waals, Coulomb) are calculated
between every atom pair, irrespective of connectivity. Excessive
close-range nonbonded interactions are avoided by shielding.

- All connectivity-dependent interactions (i.e. valence and torsion
angles) are made bond-order dependent, ensuring that their energy
contributions disappear upon bond dissociation.

- ReaxFF uses a geometry-dependent charge calculation scheme
that accounts for polarization effects.

:Tersoff, PRB 1988;2: Brenner PRB 1990
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General rules

- MD-force field; no discontinuities in energy or forces even during
reactions.

- User should not have to pre-define reactive sites or reaction
pathways; potential functions should be able to automatically handle
coordination changes associated with reactions.

- Each element is represented by only 1 atom type in the force field;

force field should be able to determine equilibrium bond lengths,
valence angles etc. from chemical environment.
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ReaxFF Computational expense
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Current development status

Published ReaxFF force fields for:

- H/C (van Duin, Dasgupta, Lorant and Goddard, JPC-A 2001, 105, 9396; van Duin and Sinninghe Damste, Org.

Geochem.2003, 34, 515; Chen, Lusk, van Duin and Goddard PR-B 2005, 72, 085416, Han, Kang, Lee, van Duin and Goddard
Appl. Phys. Lett. 2005, 86, 203108)

- SI/SIOZ/SIC (van Duin, Strachan, Stewman, Zhang, Xu and Goddard, JPC-A 2003, 107, 3803; Chenoweth, Cheung,
van Duin, Goddard and Kober, JACS 2005, 127, 7192; Buehler, van Duin and Goddard, PRL 2006, 96, 095505)

- Nitramines/RDX/TATP (Strachan, van Duin, Chakraborty, Dasupta and Goddard, PRL 2003,91,09301; Strachan,

van Duin, Kober and Goddard, JCP 2005,122,054502; Han, Strachan, van Duin and Goddard, in preparation; van Duin,
Dubnikova, Zeiri, Kosloff and Goddard, JACS 2005, 127, 11053)

- Al/Al,O4 (zhang, Cagin, van Duin, Goddard, Qi and Hector, PRB 2004,69,045423)

- Ni/Cu/Co/C (Nielson, van Duin, Oxgaard, Deng and Goddard, JPC-A 2005, 109, 493)
- Pt/PtH (Ludwig, Vlachos, van Duin and Goddard, JPC-B 2006)

- Mg/MgH (cheung, Deng, van Duin and Goddard, JPC-A 2005, 109, 851)

-BN-nanotubes (Han, Kang, Lee, van Duin and Goddard, JCP 2005, 123,114703; Han, Kang, Lee, van Duin and
Goddard, JCP 2005, 123,114704)

- Li/LiC (Han, van Duin and Goddard, JPC-A 2005, 109. 4575)
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Parallel ReaxFF: GRASP/ReaxFF

- ReaxFF is now incorporated in the Grasp-framework (Aidan Thompson,

Sandia) allowing parallel ReaxFF-simulations.

CPU Time (secs/timestep)

GRASP Performance on BG/L with ReaxFF
Comparison with Liberty Cluster (3GHz Pentium+Myrinet)

RDX Explosive with Oxygen

ReaxFF force field with charge equilibration
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Number of Processors

*ReaxFF enables reactive modelling
+Si/SiO,, Explosives, film growth

*Each process computes energy and
forces for a virtual non-periodic cluster

*Low communication, duplicated
computation ~ P(N/P)%3

*Uses Van Duin’s Fortran subroutines for
force calculation.

*Good strong scaling
*Sweet spot: 5000 atoms/processor
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Parallel ReaxFF: USC-Caltech-Ames collaboration

USC-Caltech-NASA Ames collaboration

Design-space diagram on .
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NASA Columbia i

EDC-DFT

i o
10 |

Execution time/MD step (sec)

P =1,920/processors

10° 10®° 107 10® 10° 10" 10"
Number of atoms

0.1

\ Cc l\Irab_okratbr,s': R. Bisy
Srivastava (NASA-Ame

Parallel efﬁCiency as high a.S O. 95 3 Available online at www.sciencedirect.com —_—
.c.....,.@.,....c,. COMPUTATIONAL

MATERIALS
e 19 billion-atom classical multiresolution MD ELSEVIER i i e e bl

www.elsevier.com/locate/commatsci

(MRMD) of SiO,

A divide-and-conquer/cellular-decomposition framework for

* 0.56 billion-atom fast reactive force-field (F-RG&XFF) million-to-billion atom simulations of chemical reactions
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Priya Vashishta 2, Fuyuki Shimojo *°, é\dri C.T. van Duin °:!
* 1.4 million-atom (0.12 trillion grid points) embedded ¥illliany A, Goddind. - Rupsk Bisws " Dok Syvaitay
. . . . & Collab Y. JSor “‘ d f‘ ; ing and .' D eparime o[ Computer St:‘ignce: Department of Physics & A.nrono'my’
divide-&-conquer (EDC)-density functional theory | e ok g St s Gty ok g e i Uh
(DFT) MD of A1203 O NSA Advimced Supereomputing (NAS) Dioion, NASA Ames Resireh ente, Mofits Bl CA 94035, USA > o1

Received 22 February 2006; accepted 21 April 2006



Planar Shock on RDX Crystal

V,: Particle velocity V,: Shock velocity

e USC’s parallel F-ReaxFF program
e Number of atoms: 2,322,432 or 145,152

o System size: 358x284x271 A’ (24x24x24 unit cells) or
358x71x68 A3 (24x6x6 unit cells)

* Particle velocity: V,= 0.5-5 (km/s)
e Piston modeled as a momentum mirror

15



Planar Shock on RDX
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 Shock velocity agrees well with experimental data USC

* Onset of detonation consistent with the experimental detonation
velocity 16



- ReaxFF: background, rules and current development status

- Stress-induced crack propagation
- Developing the Si/SiO reactive force field
- Stress-induced crack propagation
- Integration of ReaxFF in a multi-paradigm computational framework (CMDF)
- ReaxFF/Tersoff/ CMDF simulations on crack propagation in silicon
- Influence of corrosion on crack propagation

- Hydrocarbon combustion and metal-oxide catalyzed hydrocarbon
oxidation

- Force field development

- Simulations on o-Xylene combustion

- V,05-catalyzed hydrocarbon conversion

- Hydrogen and hydrocarbon conversion on Pt- and Ni-surfaces
- Force field development
- Methanol conversion on Pt[111]
- Ni/Cu/Co catalyzed nanotube formation
- H, dissociation on a facetted Nisyg-particle
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Developing the Si/SiO reactive force field
2) Angle strain

1) Bond dissociation energies el _ o
Ring size/strain correlation in SiO,-polymers
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Correcting a ‘finished’ ReaxFF force field
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Re-optimize ReaxFF with equation of state for 5-coordinate Si-phase

i . -1
\S\ _~ ReaxFF
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- Re-optimized ReaxFF gets proper stability for 5-coordinate Si-phase
- 5-coordinate phase is more stable than 6-coordinate Si(f3) !

- 5-coordinate Si might be important in amorphous Si
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MD-anneal run on bulk phase Si-a with ReaxFF
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Stress-induced crack propagation

with Markus Buehler (MIT), Jef Dodson, Si-ping Han, Yi Liu, Andres Jaramillo Botero
and Bill Goddard

Hydrogen-terminated Si-slab
ReaxFF NVT (100K) MD-simulation

- ReaxFF describes proper, brittle behaviour of
crack propagation in silicon

- ReaxFF can be used to simulate effects of
corrosive reactants (H,0, H;0*, O,) on crack
propagation speed

- ReaxFF is 20-50 times slower than non-
reactive metal or metal oxide FF

- Use ReaxFF at crack-tip and metal/metal oxide
interface; use cheaper method away from
reactive zone

ReaxFF and QM equations of state for Si
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Integration of ReaxFF in a multi-paradigm computational framework (CMDF)

» Python

Level

File Reader

Applications draw on

Open Babel Data Structure global data structure

Data Structure N

Data Structure 1 Data Structure 2

SWIG Interface

Computational Engine 1

Computational Engine 2

Computational Engine N

Compiled
Objective: Easy-to-use for developers Language 23




Current simulation methods in CMDF

-PyModSim (bead models) _— INTERFACES

-APBS

-FEM codes
(PYRE/ASC center)

Goal: “Methods at

every scale” Py -
.— MACROSCALE
INTERFACES S

Mesoscopic
theories

-ReaxFF

module _ INTERFACES
molecillgfsc:;igmics ¥
+ -PyModSim, ModBiograph
i -ModITAPIMD Define
-EB/&%L/@%TE -ModMMTK CMDF
-ModModoSCF nterFaces I V0P
-ModSeqQuest -ModQeQ

-Mod.Jaauar



Multi-scale simulations on crack-propagation

Concurrent
integration of
various scales
and paradigms

FE (contipuum)

ReaxFF MD(nonreactive) MACROSCALE(FEM)

QM ~1.10 nm ~10..50 nm ~100 nm ~um

\- S — =
FF training 10E3-10E4 atoms 10E6 atoms

nonreactive
atomistic

ReaxFF

nonreactive
atomistic

» Concurrent FE-atomistic-
ReaxFF scheme in a crack
problem (crack tip treated by
ReaxFF) and an interface
problem (interface treated by
ReaxFF).

 Highlighted transition regions
as handshake domains between
different scale and methods.
*QM stays out of multi-scale
simulation; use QM to train 25
ReaxFF




ReaxFF/CMDF application to crack propagation in silicon

(110) crack surface, 10 % strain

3.5 ps 7.0 ps 10.5 ps

14.0 ps

100) crack surface, 10 % strain

0.7 ps 2.8 ps

ReaxFF B
Tersoff B

Buehler, van Duin and Goddard, PRL (2006)

Crack Speed vs. Loading (111)

Crack Speed (m/s)
o
o
o
—

4 Hauch et al. (experimental)

-J- Stillinger Weber

—@—EDIP force field

—4—ReaxxFF and Tersoff potentials |

0 2 4 6 8 0 12 14 16 18 20 22
G/Ge

24

- Excellent agreement with experiment
- ReaxFF can predict material
properties not covered specifically by
its QM-training set
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Influence of corrosion on crack propagation

ReaxFF/EAM/CMDF
simulations
Influence of oxidation on crack
propagation in aluminium
QM ReaxFF Finite element

100 4
E & X / —e—NiS(B1)
£ , / = NiS(B2)
% 50 / NiS(B4;ab)
o / NiS(B4;c,
g 25 '/’,'; / +Nis:B13;;b) IEaInFP
2 - —s—NiS(B13;c ni
‘g 0= +\\. ,///x/ H—NiS;Z ) | traini _g|/
z e S

-25 il T T ]

4 6 8 10

Density (kg/dm?®)

Determine equations of state,
binding energies, barriers

Determine sulfur diffusion constants
and decohesion behaviour in Ni-
bulk, surfaces and grains

Simulation of stress-corrosion in
macroscopic samples

Collaboration with Ortiz-group (Caltech) and Vashishta-group (USC)
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- ReaxFF: background, rules and current development status

- Stress-induced crack propagation
- Integration of ReaxFF in a multi-paradigm computational framework (CMDF)
- ReaxFF/Tersofff CMDF simulations on crack propagation in silicon
- Influence of corrosion on crack propagation

- Hydrocarbon combustion and metal-oxide catalyzed hydrocarbon
oxidation

- Force field development

- Simulations on o-Xylene combustion

- V,05-catalyzed hydrocarbon conversion

- Hydrogen and hydrocarbon conversion on Pt- and Ni-surfaces
- Force field development
- Methanol conversion on Pt[111]
- Ni/Cu/Co catalyzed nanotube formation
- H, dissociation on a facetted Niyyq-particle
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Hydrocarbon oxidation

with Kimberly Chenoweth, Sanja Pudar, Mu-Jeng Cheng, Jonas Oxgaard and Bill Goddard

Mixed metal oxide catalyst (Bi,Mo,V,Te,O,,)

2 H,0

Selective oxidation of propene using multi-
metal oxide (MMO) catalysts
— Accounts for majority of the 8 billion pounds

of acrolein produced annually (4-5% yearly
growth)

Small improvements in catalytic efficiency

can have major impact on energy

requirements

Understanding the process on a molecular
level required to improve efficiency and/or
selectivity

Complicated structure MMO-catalysts
make QM very expensive

Develop ReaxFF based on QM-data , use
ReaxFF to perform high-temperature
simulations on catalyst/hydrocarbon
reactions

First, need to establish that ReaxFF can
describe non-catalytic hydrocarbon
combustion

29
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Force field development: hydrocarbon oxidation

Qmﬁ

Oxidation reactions
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- total training set contains about 1700 compounds



Force field development: metal oxides

Methane reaction with V,0,, cluster
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Propene reactions with Mo;Og4 cluster

Heat of formation (kcal/mol)

0Equations of state for metal oxide phases
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Goddard, van Duin, Chenoweth, Cheng, Pudar, Oxgaard,
Merinov, Jang and Persson, Topics in Catalysis 2006




Test ReaxFF CHO-description: oxidation of o-xylene

2 o-Xylene; 70 O, in 20x20x20 Angstrom box
ReaxFF NVT/MD at T=2500K

Compound frequency

20

15 F

10 |

Potential energy

Ll ] T 1 I T

- Oxidation initiates
with OOH-formation
- Final products
dominated by CO,

Consumed O,

co,

CO, and H,0

o-Xylene
0 200 400 600 800 1000 1200

Time (ps)
12600
12800 §
-13000 n
-13200 b
-13400 i
-13600 B
-13800 . .
-Exothermic reaction
-14000 |- -Exothermic events
114200 - are related to H,0
14400 - and CO, formation
-14600 |-
'148“) L L 1 L L 1
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o-Xylene oxidation: Detailed reaction mechanism

-

H H, LOOH
L e
H, frame 128 H, frame 174 CH,
- Reaction initiation with HO,-
o, 02 frame 175 formation
H,C=0 @:Z J | Hg=0 £0
OH H, - ©M on oH - Dehydrogenation occurs at methyl-
frame 176 P frame 176 s groups, not at benzyl-hydrogens
' frame 177 %2 H o - Only after H,C=0 is formed and
L 0. dissociated the benzene ring gets
o Cﬁ L % ou  oxidized
oy H£L=0 frame 179 H, frame 180 2 H,0
H, HC=0
OH _ H .
H,0 1 Ring opens shortly after destruction
Ho H of aromatic system
— H H })
Ho _ OH H
H TR H W i:i - Ring-opened structure reacts quickly
co 0 rame 208 co, frame 193 " with oxygen, forming CO,, H,O and
H0 H0 H.O OH €O, HO,
2 o OH CO
O3 H,0 27 HO,
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" . co - ReaxFF gives sensible predictions
He F(Lg‘% L mo °# that can be directly tested against QM
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H Wooh fame232 €O, no oy frame 232 1 H H H HO
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V,0;-catalyzed hydrocarbon oxidation

14 s,
12 = o 1
2 10 k= Norbornane o ——
g J— .
9 3 — o
% - — Products
£ & - -
E - w—
4t oxc X
+
2 E_ % 3
M e 4
0 )
0 50 100 150 200 250
Time (ps)

- Predict relative activity of various metal oxide phases
- Predict reaction rates for different hydrocarbons

- Predict kinetics as a function of
temperature/pressure/composition

- Find active sites; check with QM

Norbornane/V,0;-system
NVT/MD at T=1600K
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» Metal oxide slab (~600 atoms) kept at 500K and heatup hydrocarbons at 0.002K/fs for 125 ps
» Temperature control using Berendsen thermostat with 0.1 ps damping constant using a MD time step of 0.25fs

Selective Hydrocarbon Activation on V,0. Surface
6 T T T T T T

5
[%2]
Q
=}
O
Q@
o4
=
©
o) ]
S ’ V \
>
z
2} —— Methane
Propane
1t o-Xylene
Propene \
0 L 1 1 1 1 L
1000 1100 1200 1300 1400 1500 1600 1700

Hydrocarbon Temperature (K)

* Propene reacts first and methane reacts last which is consistent with C-H bond strength
* C-H Bond Strength: Propene < o-Xylene < Propane < Methane 35



Multicomponent combustion: gas/surface burning in a Al/Al,O,/nitramine system

Energy (kcal/mol)

Temperature (K)

100

80 -

Number of molecules

-225000

-230000 -

-235000 -

-240000 -~

-245000 -
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-255000 -

-260000 -
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-270000
5500

5000 -
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2000 -
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Products

-Main

1 products:
N,, HCN,

1 H,C=N

- NO, is main
1 intermediate
- All oxygen
| ends in Al-
phase

- Good energy
conservation
during NVE
simulation

- Energy release
stops at t=25 ps.

Temperature

- Final
temperature
around 5250K

Time (ps)

25






Comparison of ISP for different systems

Mass | Energy T I

kg/mol | kcal/mol final §p, max
PETN+AlI/ALO;| 37.52 | 30527 |S520 K| 267 s
RDX+AVALO; | 37.25 | 27474 |5113 K| 254 s

Initial compositions (PETN has better oxygen balance):

PETN: 43xC.H,0,,N, +Al, /AL, O, RDX: 58xC,H,ON, + Al,/Al,,.O,,

Final compositions: PETN: Al .0, N,.C,.H,s RDX: Al.,,0,,;N.,C.Hq

- Oxidation of Al-phase

0.5

O:Al (PETN)
0:Al (RDX)

0 5 10 15 20
Time (ps)

25 30

- Initial temperature T;=1000K for
both systems

- PETN provides more oxygen for
Al-phase oxidation

- Rate of oxidation of Al-phase is
higher for PETN-based propellant

- Rate of PETN decomposition is higher than of RDX.

- PETN exhibits faster dissociation of NO,-fragments which initiate
early burning of Al-metal surface.
- PETN provides higher oxidation rate of Al-phase and larger final

stoichiometry (~13%) of the oxidized Al in comparison with RDX.
- Decomposition products are also different: PETN-composite does
produce very little H,CN=N, HCN, but more N,, CO, and H,

0.8

0.6

0.4

0.2

-230000

-235000

Energy release

€240000

E PETN + ALLO,-Al
245000

g RDX + ALO,-Al

>250000—

>
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w
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@000 -

=
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E | Temperature

IEJZOOO =

I PETN + ALO,-Al
1000
L RDX + AL,O-Al
0 | | | | | |
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Time (ps)

Decomposition
products of




- ReaxFF: background, rules and current development status

- Stress-induced crack propagation
- Integration of ReaxFF in a multi-paradigm computational framework (CMDF)
- ReaxFF/Tersofff CMDF simulations on crack propagation in silicon
- Influence of corrosion on crack propagation

- Hydrocarbon combustion and metal-oxide catalyzed hydrocarbon
oxidation

- Force field development

- Simulations on o-Xylene combustion

- V,05-catalyzed hydrocarbon conversion

- Hydrogen and hydrocarbon conversion on Pt- and Ni-surfaces
- Force field development
- Methanol conversion on Pt[111]
- Ni/Cu/Co catalyzed nanotube formation
- H, dissociation on a Nispg-particle
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Fuel cells: anode/cathode catalysis

Collaborators: Sang Soo Han, Seung Soon Han, Valeria Molinero, Yun Hee Yang (GIST,
Korea), Timo Jacob (FHI), Boris Merinov and Bill Goddard

O, » H,0

+
’\H3O - Aim: perform atomistic
scale reactive dynamics
\ e- simulation on a realistic

Membrane model of the entire fuel cell

- Complicated chemistry,
T . need relatively large system
/H diffusion to capture all aspects
- Use QM-data on isolated
systems to parameterize
ReaxFF, then use ReaxFF
» CO, on full system

CH,OH

40
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Force field development

1. Bulk metal, metal clusters and metal surfaces

Equations of state for bulk metal phases Oxygen binding to Ru,g-clusters

QM ReaxFF 1401

Energy (eV)

120 4
’\,\&‘\‘\Hﬂ 3
\ E 100 4
3
——FCC < 80 1
& QM
eoHeP £ 5 M ReaxFF
2
= se 1] Pt S 40
\\‘\‘-’//' —*—Dia \-‘/// &
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Ru-metal cluster atomization energies
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- ReaxFF parameters available for Na, Mg, Ca, Ba, Ti, V, Co, Ni,
Cu, Al,Y, Zr, Mo, Te, Ba, Ru, Pt and Bi-metals
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Energy (kcal/mol)

2. Ni/hydrocarbon clusters

150

Ni dissociation from 6-ring

DFT/B3LYP/LACVP™ for Ni

_--CH,

—e—DFT singlet 1001

—@—DFT triplet

—a—ReaxFF >=Ni

50 -
0
H
100
H -~
= TTTte-al_.
I\
>~ _.-
. H
H H . —&—DFT singlet
— ——DfT S|.nglet 50 —=—DFT triplet
Ni —@—DFT triplet ReaxEE
=~ —i—ReaxFF
—H
H CNi
T 1 0 1 T 1
2 3 4
1 2 ’ 4 QM-level:
Bond length (A) DFT/B3LYP/6-31G™ for C Bond length (A) 42



Binding energy (kcal/mol)

Hydrocarbon binding to Pt,.-clusters

'O QC mReaxFF

100 A

50 A

HCCH3
SCCH2
CHCH2
H2CCH3

e\

H2CCH2(I)
H2CCH2(II)




4. Reaction pathways

Methanol reaction on Pi[111]surface

TS E S 2Hz(g)+Cfr(g)
XA DSIA DSIAN 15 _

AN
IXIXIXIADADY

== QM-data (Greeley and Mavrikakis, 2004) ~—

Energy (eV)

-2 3H+COH o

25 4H+CO
Reaction coordinate

H3COH(g)- >H3COH(ads) ——
H3COH(ads)-->H2COH+H —— H2COH+H-->H2CO+2H
H2COH+H-->HCOH+2H —— H3COH(ads)-->H3CO+H
HCOH+2H-->COH43H —— H3COH(ads)-->H3C+0H

- Excellent agreement between ReaxFF and QM for entire
reaction path 44



Applications of the Ni/Pt ReaxFF potentials

1. Methanol conversion on Pt[111]-surface
MD-simulation at T=1250K on methanol/Pt[111]

| j I_'.‘l 4 rf"r' .‘b!. -..,: ‘;". ._I.‘ FI:.':I '\i | :\tl b .III.-__.'-..Itl
& Pt [ Y A il N Al B N \‘.' ~' e 1;-_1 |
thesty- "‘*itﬁ‘ 'L{ PJ}‘-" '.l" TN i! \"' 1.ll 5
' - c 50
S
3 H(ads)
L 40
yo F/_/./_
C
3 30
o
£  Methanol(g) ‘/—/—/J
o
O 20
CO(ads)
10 H,COH(ads) -
/__—/\’_“_,
0 | | ‘ COHG@ds)
0 25 50 75 100 125

Time(ps)

- Methanol dissociates on Pt-surface, generating adsorbed hydrogen
- CO accumulates on surface (poisoning)
- ReaxFF descriptions for Ti, Mo, V, Bi, Ru, Ni under development 45



2. Ni/Co/Cu catalyzed nanotube formation

Collaborators: Si-ping Han, Kevin Nielson, Weigiao Deng, Jonas Oxgaard, Mark Lusk (CSM)
and Bill Goddard

high T
Carbon source >

metal catalyst

- Synthesis mechanism not clear

- Metal influences reaction product
(single, double wall, nanotube
diameter, nanotube/buckyball ratio)

Nanotube
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- Ni-atoms can grab C,-
monomers and fuse them
as new 6-membered rings

- Start configuration: 20 C,-rings, 5 metal atoms on edge

- NVT simulation at 1500K

- Add C,-molecule every 100,000 iterations i



Results after 2,000,000 iterations

Metal=Ni

Metal=Co

\

e o—0 y

-N1 and Co lead to greatly
enhanced ring formation. Cu is far
less active.

Nielson et al., JPC-A 2005



3. H, dissociation on a Niy,g-particle

Preparation of the Ni;,,-particle

Initial configuration: sphere in fcc-configuration
- Heat up to 1600K to melt surface

- Cool down to 300K to form surface facets

- [111] surface dominate

- Core retains fcc-configuration




Analysis of the Ni,,4-particle

5 neighbours (adatom): 4 atoms

. 12 neighbours (fcc): 133 atoms
. 11 neighbours: 17 atoms
- O 10 neighbours: 8 atoms
"/x ‘ O 9 neighbours (111 facet): 41 atoms
O\ _" Q 8 neighbours (100 facet): 33 atoms
. 7 neighbours: 34 atoms
O 6 neighbours (edge): 37 atoms
O

. 4 neighbours (adatom): 2 atoms

- Surface dominated by 111-facets
and related edges

50



300K

Reaction with H, at T
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- Nizog reacts faster than Ni(100

Ni(111)-surfaces

= \

f

|

Y
X

AN

surface reacts faster than Ni(111)

- Ni(100)-
surface

51

- H,-dissociation stops when surfaces are
saturated; no formation of subsurface

hydrogen species

Time (ps)

Ni-111

[(Ni-100



Analysis of hydrogen location

) "",'7
RN
Rl

b4

A

b

P\V
?‘\\\,
w

O

b
‘_-\\(
.v‘i

AN

»

b

L
.W' o
s
- o
—
\v‘
A

|
.
s

pe

.

’ . LS
,:!»

==

| 7
|
—

|

~®
-

"
I

.

Ol

=0 %
NN
I

J' /

>

L~

. 12 neighbours (fcc):

. 5 neighbours (adatom):
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% coverage

133atoms OH
17 atoms 9H
8 atoms 6H

O 9 neighbours (111 facet): 41 atoms 31H
Q 8 neighbours (100 facet): 33 atoms 14 H
. 7 neighbours: 34 atoms 12 H
O 6 neighbours (edge): 37 atoms 12 H

4 atoms 1H
2 atoms OH

- Hydrogen accumulates on [111] facets,
preferably around [111] edge sites

- Low-coordination Ni-atoms help
dissociating H, but do not make stable Ni-H
bonds; H diffuses on to [111] facets 59

0%

53%
75%
76%
42%
35%
32%
25%
0%



Hydrocarbon conversion on Ni-particle

- Initial configuration: Ni,,,-particle; 30 propene
- Temperature: 1500K
- Box size: 25x25x25 Angstrom

1 D Propene(g)
12 + q
g i °f R C(Ni)
g
= 8
2
w 26 1 H(Ni)
5]
o t i
; ) oo Hy(g)
? NN\ . Methahe(@) [\/ [\ I/L]_/ Propaneg)
0 v‘/ \V 4 ‘\‘./ 1 \ \” \\‘n /"‘ ‘\“ \\’/ l: j l/l ! L
0 200 400 600 800 1000 1200
Time (ps)
Propene (-25)
”1"‘,‘\1?5!
Methane(gas) —— CH+CH2+CH3+C2H4(ads)
Propane(gas)

- Ni catalyzes C-H bond breaking in propene
- Carbon accumulates in Ni-cluster

- Hydrogen equilibrates with gas-phase H,

- Relatively slow reaction (compared with H,)
- C(ads) may eventually form CNT-like
structures

- No surface-facets due to high temperature




and can handle both complex chemistry and chemical diversity.

Conclusions

- ReaxFF has proven to be transferable to a wide range of materials

Specifically, ReaxFF can describe covalent, metallic and ionic materials
and interactions between these material types.

- The low computational cost of ReaxFF (compared to QM) makes the
method suitable for simulating reaction dynamics for large (>> 1000
atoms) systems (single processor). ReaxFF has now been parallelized,

allowing reactive simulations on >>1000,000 atoms.

- group 18
.E I'a* [] alkali metals [[] other metals [Jnoble gases Vlélb
&n [[] alkaline earth metals [[]other nonmetals []lanthanides 13 14 15 16 17 [3
1H Ilza [[] transition metals [[Ihategens [] actinides igg ixg g: ii: gg: He
= 4 S 3 7 8 9 10
2ILi B |[C [N [0 [F [Ne
11 |12 3** 4 S 6 7 8 2 10 13 [14 [15 [16 [17 |18
N R ot e LA
19 20 21 22 23 24 25 26 27 28 29 30 31 22 23
4k |Ca Ti |V Fe [Co |Ni [Cu |Zn
37 38 39 40 41 42 43 44 45 46 47 48 49 S0 51
3(Rb Y |Zr Mo Ru
55 S6 S7 2 73 74 75 76 77 78 79 80 21 82 83
e Pt Bi
87 88 89 104 | HOS [J106& | 107 | HO2 [[(102] [110] (111 1121

: not currently
described by
ReaxFF
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